วีดีโอ: คุณจะหาจุดยอดของพาราโบลาแนวนอนได้อย่างไร?
2024 ผู้เขียน: Miles Stephen | [email protected]. แก้ไขล่าสุด: 2023-12-15 23:41
ถ้า พาราโบลา มี แนวนอน แกน รูปแบบมาตรฐานของสมการของ พาราโบลา คือ: (y -k)2 = 4p(x - h) โดยที่ p≠ 0. The จุดยอด ของสิ่งนี้ พาราโบลา อยู่ที่ (h, k) โฟกัสอยู่ที่ (h + p, k) Thedirectrix คือเส้น x = h - p
แล้วคุณจะหาจุดยอดและไดเรกทริกซ์ของพาราโบลาได้อย่างไร?
รูปแบบมาตรฐานคือ (x - h)2 = 4p (y - k) โดยที่ จุดสนใจ คือ (h, k + p) และ directrix คือ y= k - p ถ้า พาราโบลา ถูกหมุนเพื่อให้มัน จุดยอด คือ (h, k) และแกนสมมาตรของมันคือขนานกับแกน x มันมี สมการ ของ (y - k)2 = 4p (x -h) โดยที่ จุดสนใจ คือ (h + p, k) และ directrix คือ x = h - p
นอกจากนี้ สมการของพาราโบลาด้านข้างคืออะไร? รูป "ทั่วไป" ของ a สมการพาราโบลา คือสิ่งที่คุณคุ้นเคย y = ax2 + bx + c - เว้นแต่กำลังสองคือ " ด้านข้าง " ซึ่งในกรณีนี้ สมการ จะมีลักษณะบางอย่างเช่น x = ay2 + โดย +c.
แล้วคุณจะหาจุดยอดของสมการพาราโบลาได้อย่างไร
จุดนี้ที่ พาราโบลา เปลี่ยนทิศทางเรียกว่า " จุดยอด " ถ้าเขียนสมการกำลังสองอยู่ในรูป y = a(x – h)2 + k แล้วก็ จุดยอด คือจุด (h, k) มันสมเหตุสมผลถ้าคุณคิดเกี่ยวกับมัน ส่วนกำลังสองเป็นค่าบวกเสมอ (สำหรับด้านขวาขึ้น พาราโบลา ) เว้นแต่จะเป็นศูนย์
จุดยอดของพาราโบลามีค่าเท่ากับ p เท่าใด
ความสัมบูรณ์ ค่าของ p คือระยะห่างระหว่าง จุดยอด และจุดโฟกัสและระยะห่างระหว่าง จุดยอด และไดเรกทริกซ์ (ป้ายบน NS บอกฉันทางที่ พาราโบลา ใบหน้า) เนื่องจากโฟกัสและไดเรกทริกซ์ห่างกันสองหน่วย ระยะนี้จึงต้องเป็นหนึ่งหน่วย ดังนั้น | NS | = 1.